• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Biology Wise

Biology Wise

  • Home
  • About
  • Contact
  • Articles

Start Codon

A start codon is the starting point of translation in a cell. Read the following article to gain more information about this subject.

Home / Uncategorized / Start Codon

Like it? Share it!

  • Share
  • Tweet
  • LinkedIn
  • Email
Start Codon

A start codon is the starting point of translation in a cell. Read the following article to gain more information about this subject.

What is a Codon?

A codon is a kind of genetic code, which is a set of rules, by which certain information is encoded in the genetic material that may be either DNA or mRNA sequences, from where it is translated into proteins. These proteins consist of amino acids that are strung together in a specific sequence. Any change in this sequence signifies a change in the coding; this is normally seen in cases of genetic mutations. Each codon is made up of three bases, which are codes for a single amino acid, and they form a mapping that is encoded in the tRNA of the organism. Altogether, there are four bases that are present in the DNA: adenine, cytosine, guanine, and thymine.

What is a Start Codon?

Would you like to write for us? Well, we're looking for good writers who want to spread the word. Get in touch with us and we'll talk...

Let's Work Together!

A start codon in DNA initiates the translation of the first amino acid in the polypeptide chain. The first three bases of the coding sequence of mRNA to be translated into proteins, is where the initiation codon is located. This is an important structure, because the actual protein sequence that is translated is defined by a start codon. The initiation codon is almost always preceded by an untranslated region called 5′ UTR, which is also known as the leader sequence. It is a particular section of mRNA, which starts at the +1 position. This is the region where transcription begins and ends, just before the codon start of the coding region.

This is usually the first AUG codon in the mRNA sequence. Additionally, in cases of DNA start codons, the material typically consists of the ATG codon bases. It is only in very rare cases that higher organisms, i.e., eukaryotes, have non AUG initiation codons. However, in addition to AUG, there also are certain alternative ones like GUG and UUG. These are seen in lower and less differentiated organisms, i.e., in prokaryotes. For example, E. coli uses ATG (AUG) 83% of the time, GTG (GUG) 14% of the time, and TTG (UUG) 3% of the time. One or two others, like ATT and CTG, are seen very rarely. Every time, there may not be the same start codon even within the same species. Bacteria and archaea have UUG and GUG as their initiation codons on most occasions. However, it has been seen that in certain rare cases, specific proteins may use alternative initiation codons, which may not be used by that species.

All start codons code for methionine, as this is the first amino acid that is coded during protein synthesis. Even if alternative initiation codons are present, it eventually does get translated as methionine, even if the codon present normally does encode for a different amino acid. This happens because a separate tRNA is used for initiation in such cases. Translation starts with chain initiation or start codon. There is one major difference between start codon and stop codon. Unlike the later ones, the former alone are not sufficient to begin the process of protein synthesis. Nearby sequences and certain initiation factors are also required to the start the process of translation.

In cases of start codon mutation, as usual, the mutated mRNA would be shunted to the ribosomes, but the translation would not take place. This is because an initiation codon is responsible for starting translation, not a transcription start codon. Hence, it cannot necessarily produce proteins, as this codon lacks a proper nucleotide sequence that can act as a reading frame.

The information provided above is a brief insight into the start codon structure, function, and what happens when there is mutation of this initiation code. This codon plays a pivotal role in translation, and hence, it is a very important component of the genetic composition of every cell.

Related Posts

  • Characteristics of Fungi

    Did you know the fact that fungi lack chlorophyll? This type of life form can cause diseases in humans and can also be used to make cheese by the process…

  • Plant Cell Parts

    Plant cells have always spurred curiosity amongst biology students, besides others. Hence, here in this article, I have provided some detailed information.

  • Asexual Reproduction in Animals

    Sexual and asexual reproduction are the two means of producing offspring. Read this article to gain more information about asexual reproduction in the animal kingdom.

« Previous Post
Next Post »

Category iconUncategorized

Get Updates Right to Your Inbox

Sign up to receive the latest and greatest articles from our site automatically each week (give or take)...right to your inbox.
Blog Updates

Exploring the website?

Our site includes quite a bit of content, so if you're having an issue finding what you're looking for, go on ahead and use that search feature there!

Footer

We hope you are enjoying Biologywise! Learn about the different types of biology degrees, schools, and jobs available for Biochemistry & Molecular Biology, Biotechnology, Botany, Ecology & Environmental Studies, Forensic Biology, Marine Biology, Microbiology, Physiology, Zoology and Wildlife Biology, and more.
  • Facebook
  • RSS

Copyright © Biology Wise & Buzzle.com, Inc.
6789 Quail Hill Pkwy, Suite 211 Irvine CA 92603

  • Privacy Policy
  • Terms of Use
  • Contact Us
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsAccept
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.